
Hands-On with Mendix 7

March 30 2017

Andrej Koelewijn, Bart Luijten, Jan de Vries

 Smart Apps - Make your apps intelligent, proactive, and contextual

 Mendix Connector Kit - Defining integrations is now a breeze

 Mendix Web Modeler - Experience the value of collaborative development

 Native Mobile Experience – Anywhere, Always On

 Mendix Application Test Suite - Embed testing in your application life-cycle

 Mendix Application Performance Monitor - Get a grip on performance early on

Mendix 7

 Resilient and scalable Apps – Stateless Mendix Runtime

 Smart Apps - Make your apps intelligent, proactive and contextual

 Mendix Connector Kit - Defining integrations is now a breeze

 Mendix Web Modeler - Experience the value of collaborative development

 Native Mobile Experience - Anywhere. Always On

 Mendix Application Test Suite - Embed testing in your application lifecycle

 Mendix Application Performance Monitor - Get a grip on performance from

early on

Mendix 7

 Resilient and scalable Apps – Stateless Mendix Runtime

 Why a stateless runtime?

 How does it work?

 Best practices

 Migration to Mendix 7

Mendix 7

 Resilient and scalable Apps – Stateless Mendix Runtime

 Why a stateless runtime?

 How does it work?

 Best practices

 Migration to Mendix 7

 REST consume

Mendix 7

Why a Stateless Runtime?

• Runtime state shared in a

state database: Redis

• Pros

• Transparent to client

• Cons

• Does not scale to large amounts

of objects in session

• Complex garbage collection

• Complex infrastructure

Mendix 6 – Shared State Database

runtime1 runtime2 runtime3

App DB

state

Mendix 7 - Stateless runtime

runtime1 runtime2 runtime3

App DB

state

runtime1 runtime2 runtime3

App DB

state

 State is stored in client:

 Objects in JavaScript memory

 Garbage collected as soon as
possible

 Protected against changes of
read-only data

 Server communication optimized:

 Minimal roundtrips

 Minimal dataset needed by server

 Model analysis to ensure server
requests are as small as possible

Mendix 7 - Stateless Runtime

runtime1 runtime2 runtime3

App DB

state

How Does This Work?

 What will be kept in state by client?

 What will be included in server communication?

 When to create association with session?

Important State Concepts

State in Mendix 6

Runtimeclient
Create: MyEntity

State:
• MyEntity

• id: 1

MyEntity: id=1

State in Mendix 6

Runtimeclient

Change: 1; name=abc

1; name=abc

State:
• MyEntity

• id: 1
• name: abc

State:
• MyEntity

• id: 1

State in Mendix 6

Runtimeclient

action: doSomething
param: id 1

Refresh: 1

State:
• MyEntity

• id: 1
• name: def

State:
• MyEntity

• id: 1
• name: abc

State in Mendix 6

 Session state stored server side

 Downsides

 Scaling out (state synchronization)

 Garbage collection

 Chatty protocol

 Runtime Memory usage

State in Mendix 7

Runtimeclient

Create: MyEntity

State:
• MyEntity

• id: 1

MyEntity: id=1

State:
• MyEntity

• id: 1

State in Mendix 7

Runtimeclient
Change: object 1:
• name=abc

State:
• MyEntity

• id: 1
• name: abc

State in Mendix 7

Runtimeclient

action: doSomething
param: id 1
objects:
• MyEntity: id=1

• name=abc

State:
• MyEntity

• id: 1
• name: abc

objects:
• MyEntity: id=1

• name=def

State:
• MyEntity

• id: 1
• name: def

State in Mendix 7

 All user session state stored client side

 Benefits

 Fewer limitations on server scaling

 Lower memory requirements in Runtime

 Fewer roundtrips

 More efficient garbage collection

 Better insight for developers

 Potential side effects

 Larger requests and responses

 Due to optimizations in Mendix some apps actually have smaller requests!

Mendix 7: Impact on Your Projects

 Request input

 What client state needs to be included when calling the server

 Reachable network

 What client state can be accessed from pages

Mendix 7: Impact on Your Projects

 Request input calculated based on the reachable network of:

 Request parameters (like microflow inputs and associations used in a microflow)

 Optimizations are disabled for java actions and service calls

 Current User object

 Current Session object

 Reachable network is calculated based on objects available on the client

 Garbage collection (GC) limits the reachable network

 Static analysis of the model is used to determine server side data usage

 GC keeps all reachable …

 … NPE objects from current user, session and subscribed objects

 … changed objects from current user, session and subscribed objects

Best Practices

Best practice

 Minimize the number of in-use objects in your session

 Commit or roll back all changes to persistable objects before the end of
the main microflow

 Link non-persistable objects that have long life spans to the current
Session object

 Map only those parts of a web service integration that are necessary

 Delete any non-persistable objects as soon as they are no longer
necessary

 Don’t use non-persistable objects in layouts

https://docs.mendix.com/howtogeneral/bestpractices/
best-practices-for-app-performance-in-mendix-7

 In-use (dirty) objects cannot be garbage collected

 Will increase memory usage of your client

 May increase request size when calling server

 Consider

 NPEs pointing to many objects used in layout

 prevents GC as they stay reachable from subscribed object in layout

 NPEs pointing to current user object and current session

 they need to be manually deleted when no longer necessary

Minimize In-Use Objects in Your Session

 Dirty state (new or changed

persistent objects) needs to be

held by the browser until it’s

saved to the database

 Commit or roll back the

changes to persistable objects

before the end of the main

microflow

Minimize Dirty State at End of Microflow

 By linking to $currentSession

 Garbage collection knows it

cannot be garbage collected

 You can easily retrieve it

 Delete the NPE when no

longer used

Link Long-Lived NPEs to Current Session

 NPEs resulting from a service

call will all be sent to the

browser

 Tips

 Map only those parts of a web

service integration that are

necessary

 Delete NPEs as soon as they are

no longer necessary

 Use database (persistent entities)

to cache service call results

Integration: Calling Services

 Objects in layouts can be on

the screen for a long time

 These will be sent back and

forth between the client and

Runtime very often

Don’t Use NPEs in Layouts

 Browser refresh loses any

unsaved changes

 Multiple browser tabs behave

like separate browsers

 Each browser tab has own client

state

Browser State

 Objects with subscribed widgets

will not be garbage collected

 widget.subscribe will automatically

unsubscribe if no longer used

 data.subscribe needs manual

data.unsubscribe

 More info:

 https://apidocs.mendix.com/7/client/

mx.data.html

 https://apidocs.mendix.com/7/client/

mxui_widget__WidgetBase.html

Custom Widgets: Use widget.subscribe

https://apidocs.mendix.com/7/client/mx.data.html
https://apidocs.mendix.com/7/client/mxui_widget__WidgetBase.html

Developer Support

Monitoring Request Size in Server Log

Runtimeclient

action: doSomething
param: id 1
objects:
• MyEntity: id=1

• name=abc

objects:
• MyEntity: id=1

• name=defState:
• MyEntity

• id: 1
• name: def

Browser Developer Tools

Browser Developer Tools

 Hashed read-only values

Browser Developer Tools

 Hashed read-only values

Browser Developer Tools

 Hashed read-only values
Ctrl + Alt + G

More client object state info:
* What objects are in client state?
* What widgets are using these objects?

Browser developer tools

 Hashed read-only values

Objects kept in client state depends on
needs of page and modified state

Migrating to Mendix 7

Migration

 Make sure you have a backup!

 Upgrade to the latest 6, i.e. 6.10.5

 Fix errors, warnings and deprecations

 Replace legacy layouts

 Upgrade App Store modules

 Location of App Store modules in your project
has moved to Project node

 Update your use of java APIs

 Mendix API is more strict -> API may have been
renamed or removed

 Classloader is more strict -> You cannot use all
the jars shipped with Mendix runtime, just the
jars in userlib

 Classloader only loads newest jar of a particular
library

Migration

 Upgrade to the latest 6, i.e. 6.10.5

 Fix errors, warnings and deprecations

 Replace legacy layouts

 Upgrade App Store modules

 Location of App Store modules in your project
has moved to Project node

 Update your use of java APIs

 Mendix API is more strict -> API may have been
renamed or removed

 Classloader is more strict -> You cannot use all
the jars shipped with Mendix runtime, just the
jars in userlib

 Classloader only loads newest jar of a particular
library

Migration

 Upgrade to the latest 6, i.e. 6.10.5

 Fix errors, warnings and deprecations

 Replace legacy layouts

 Upgrade App Store modules

 Location of App Store modules in your project
has moved to Project node

 Update your use of java APIs

 Mendix API is more strict -> API may have been
renamed or removed

 Classloader is more strict -> You cannot use all
the jars shipped with Mendix runtime, just the
jars in userlib

 Classloader only loads newest jar of a particular
library

Migration

 Upgrade to the latest 6, i.e. 6.10.5

 Fix errors, warnings and deprecations

 Replace legacy layouts

 Upgrade App Store modules

 Location of App Store modules in your project
has moved to Project node

 Update your use of java APIs

 Mendix API is more strict -> API may have been
renamed or removed

 Classloader is more strict -> You cannot use all
the jars shipped with Mendix runtime, just the
jars in userlib

 Classloader only loads newest jar of a particular
library

Migration

 Upgrade to the latest 6, i.e. 6.10.5

 Fix errors, warnings and deprecations

 Replace legacy layouts

 Upgrade App Store modules

 Location of App Store modules in your project
has moved to Project node

 Update your use of java APIs

 Mendix API is more strict -> API may have been
renamed or removed

 Classloader is more strict -> You cannot use all
the jars shipped with Mendix runtime, just the
jars in userlib

 Classloader only loads newest jar of a particular
library

Migration

 Upgrade to the latest 6, i.e. 6.10.5

 Fix errors, warnings and deprecations

 Replace legacy layouts

 Upgrade App Store modules

 Location of App Store modules in your project
has moved to Project node

 Update your use of java APIs

 Mendix API is more strict -> API may have been
renamed or removed

 Classloader is more strict -> You cannot use all
the jars shipped with Mendix runtime, just the
jars in userlib

 Classloader only loads newest jar of a particular
library

Migration

 Upgrade to the latest 6, i.e. 6.10.5

 Fix errors, warnings and deprecations

 Replace legacy layouts

 Upgrade App Store modules

 Location of App Store modules in your project
has moved to Project node

 Update your use of java APIs

 Mendix API is more strict -> API may have been
renamed or removed

 Classloader is more strict -> You cannot use all
the jars shipped with Mendix runtime, just the
jars in userlib

 Classloader only loads newest jar of a particular
library

Migration

Migration – Impact of Stateless Runtime

 Every session is a persistent session

 After logout it may take up to 30 seconds before the logout is visible on all

runtime instances

 You can configure this using SessionValidationTimeout

 NPE attributes need to have read access

 Autocommitted objects not supported in system sessions

 Sign-in microflow has been removed

Rest

 HTTP response metadata

 Optionally raw response payload

 Access to headers

 Access to cookies (via headers)

 Access to status

 urlEncode & urlDecode

New Rest Features Mendix 7

 HTTP response metadata

 Optionally raw response payload

 Access to headers

 Access to cookies (via headers)

 Access to status

 urlEncode & urlDecode

New Rest Features Mendix 7

More Info

More info

 https://docs.mendix.com/releasenotes/desktop-modeler/7.0

 https://docs.mendix.com/refguide7/moving-from-6-to-7

 https://docs.mendix.com/refguide7/clustered-mendix-runtime

 https://docs.mendix.com/howtogeneral/bestpractices/best-

practices-for-app-performance-in-mendix-7

https://docs.mendix.com/releasenotes/desktop-modeler/7.0
https://docs.mendix.com/refguide7/moving-from-6-to-7
https://mendix7-beta.cfapps.io/refguide7/clustered-mendix-runtime
https://docs.mendix.com/howtogeneral/bestpractices/best-practices-for-app-performance-in-mendix-7

Thank You!

QUESTIONS?

