
Hands-On with Mendix 7

March 30 2017

Andrej Koelewijn, Bart Luijten, Jan de Vries

 Smart Apps - Make your apps intelligent, proactive, and contextual

 Mendix Connector Kit - Defining integrations is now a breeze

 Mendix Web Modeler - Experience the value of collaborative development

 Native Mobile Experience – Anywhere, Always On

 Mendix Application Test Suite - Embed testing in your application life-cycle

 Mendix Application Performance Monitor - Get a grip on performance early on

Mendix 7

 Resilient and scalable Apps – Stateless Mendix Runtime

 Smart Apps - Make your apps intelligent, proactive and contextual

 Mendix Connector Kit - Defining integrations is now a breeze

 Mendix Web Modeler - Experience the value of collaborative development

 Native Mobile Experience - Anywhere. Always On

 Mendix Application Test Suite - Embed testing in your application lifecycle

 Mendix Application Performance Monitor - Get a grip on performance from

early on

Mendix 7

 Resilient and scalable Apps – Stateless Mendix Runtime

 Why a stateless runtime?

 How does it work?

 Best practices

 Migration to Mendix 7

Mendix 7

 Resilient and scalable Apps – Stateless Mendix Runtime

 Why a stateless runtime?

 How does it work?

 Best practices

 Migration to Mendix 7

 REST consume

Mendix 7

Why a Stateless Runtime?

• Runtime state shared in a

state database: Redis

• Pros

• Transparent to client

• Cons

• Does not scale to large amounts

of objects in session

• Complex garbage collection

• Complex infrastructure

Mendix 6 – Shared State Database

runtime1 runtime2 runtime3

App DB

state

Mendix 7 - Stateless runtime

runtime1 runtime2 runtime3

App DB

state

runtime1 runtime2 runtime3

App DB

state

 State is stored in client:

 Objects in JavaScript memory

 Garbage collected as soon as
possible

 Protected against changes of
read-only data

 Server communication optimized:

 Minimal roundtrips

 Minimal dataset needed by server

 Model analysis to ensure server
requests are as small as possible

Mendix 7 - Stateless Runtime

runtime1 runtime2 runtime3

App DB

state

How Does This Work?

 What will be kept in state by client?

 What will be included in server communication?

 When to create association with session?

Important State Concepts

State in Mendix 6

Runtimeclient
Create: MyEntity

State:
• MyEntity

• id: 1

MyEntity: id=1

State in Mendix 6

Runtimeclient

Change: 1; name=abc

1; name=abc

State:
• MyEntity

• id: 1
• name: abc

State:
• MyEntity

• id: 1

State in Mendix 6

Runtimeclient

action: doSomething
param: id 1

Refresh: 1

State:
• MyEntity

• id: 1
• name: def

State:
• MyEntity

• id: 1
• name: abc

State in Mendix 6

 Session state stored server side

 Downsides

 Scaling out (state synchronization)

 Garbage collection

 Chatty protocol

 Runtime Memory usage

State in Mendix 7

Runtimeclient

Create: MyEntity

State:
• MyEntity

• id: 1

MyEntity: id=1

State:
• MyEntity

• id: 1

State in Mendix 7

Runtimeclient
Change: object 1:
• name=abc

State:
• MyEntity

• id: 1
• name: abc

State in Mendix 7

Runtimeclient

action: doSomething
param: id 1
objects:
• MyEntity: id=1

• name=abc

State:
• MyEntity

• id: 1
• name: abc

objects:
• MyEntity: id=1

• name=def

State:
• MyEntity

• id: 1
• name: def

State in Mendix 7

 All user session state stored client side

 Benefits

 Fewer limitations on server scaling

 Lower memory requirements in Runtime

 Fewer roundtrips

 More efficient garbage collection

 Better insight for developers

 Potential side effects

 Larger requests and responses

 Due to optimizations in Mendix some apps actually have smaller requests!

Mendix 7: Impact on Your Projects

 Request input

 What client state needs to be included when calling the server

 Reachable network

 What client state can be accessed from pages

Mendix 7: Impact on Your Projects

 Request input calculated based on the reachable network of:

 Request parameters (like microflow inputs and associations used in a microflow)

 Optimizations are disabled for java actions and service calls

 Current User object

 Current Session object

 Reachable network is calculated based on objects available on the client

 Garbage collection (GC) limits the reachable network

 Static analysis of the model is used to determine server side data usage

 GC keeps all reachable …

 … NPE objects from current user, session and subscribed objects

 … changed objects from current user, session and subscribed objects

Best Practices

Best practice

 Minimize the number of in-use objects in your session

 Commit or roll back all changes to persistable objects before the end of
the main microflow

 Link non-persistable objects that have long life spans to the current
Session object

 Map only those parts of a web service integration that are necessary

 Delete any non-persistable objects as soon as they are no longer
necessary

 Don’t use non-persistable objects in layouts

https://docs.mendix.com/howtogeneral/bestpractices/
best-practices-for-app-performance-in-mendix-7

 In-use (dirty) objects cannot be garbage collected

 Will increase memory usage of your client

 May increase request size when calling server

 Consider

 NPEs pointing to many objects used in layout

 prevents GC as they stay reachable from subscribed object in layout

 NPEs pointing to current user object and current session

 they need to be manually deleted when no longer necessary

Minimize In-Use Objects in Your Session

 Dirty state (new or changed

persistent objects) needs to be

held by the browser until it’s

saved to the database

 Commit or roll back the

changes to persistable objects

before the end of the main

microflow

Minimize Dirty State at End of Microflow

 By linking to $currentSession

 Garbage collection knows it

cannot be garbage collected

 You can easily retrieve it

 Delete the NPE when no

longer used

Link Long-Lived NPEs to Current Session

 NPEs resulting from a service

call will all be sent to the

browser

 Tips

 Map only those parts of a web

service integration that are

necessary

 Delete NPEs as soon as they are

no longer necessary

 Use database (persistent entities)

to cache service call results

Integration: Calling Services

 Objects in layouts can be on

the screen for a long time

 These will be sent back and

forth between the client and

Runtime very often

Don’t Use NPEs in Layouts

 Browser refresh loses any

unsaved changes

 Multiple browser tabs behave

like separate browsers

 Each browser tab has own client

state

Browser State

 Objects with subscribed widgets

will not be garbage collected

 widget.subscribe will automatically

unsubscribe if no longer used

 data.subscribe needs manual

data.unsubscribe

 More info:

 https://apidocs.mendix.com/7/client/

mx.data.html

 https://apidocs.mendix.com/7/client/

mxui_widget__WidgetBase.html

Custom Widgets: Use widget.subscribe

https://apidocs.mendix.com/7/client/mx.data.html
https://apidocs.mendix.com/7/client/mxui_widget__WidgetBase.html

Developer Support

Monitoring Request Size in Server Log

Runtimeclient

action: doSomething
param: id 1
objects:
• MyEntity: id=1

• name=abc

objects:
• MyEntity: id=1

• name=defState:
• MyEntity

• id: 1
• name: def

Browser Developer Tools

Browser Developer Tools

 Hashed read-only values

Browser Developer Tools

 Hashed read-only values

Browser Developer Tools

 Hashed read-only values
Ctrl + Alt + G

More client object state info:
* What objects are in client state?
* What widgets are using these objects?

Browser developer tools

 Hashed read-only values

Objects kept in client state depends on
needs of page and modified state

Migrating to Mendix 7

Migration

 Make sure you have a backup!

 Upgrade to the latest 6, i.e. 6.10.5

 Fix errors, warnings and deprecations

 Replace legacy layouts

 Upgrade App Store modules

 Location of App Store modules in your project
has moved to Project node

 Update your use of java APIs

 Mendix API is more strict -> API may have been
renamed or removed

 Classloader is more strict -> You cannot use all
the jars shipped with Mendix runtime, just the
jars in userlib

 Classloader only loads newest jar of a particular
library

Migration

 Upgrade to the latest 6, i.e. 6.10.5

 Fix errors, warnings and deprecations

 Replace legacy layouts

 Upgrade App Store modules

 Location of App Store modules in your project
has moved to Project node

 Update your use of java APIs

 Mendix API is more strict -> API may have been
renamed or removed

 Classloader is more strict -> You cannot use all
the jars shipped with Mendix runtime, just the
jars in userlib

 Classloader only loads newest jar of a particular
library

Migration

 Upgrade to the latest 6, i.e. 6.10.5

 Fix errors, warnings and deprecations

 Replace legacy layouts

 Upgrade App Store modules

 Location of App Store modules in your project
has moved to Project node

 Update your use of java APIs

 Mendix API is more strict -> API may have been
renamed or removed

 Classloader is more strict -> You cannot use all
the jars shipped with Mendix runtime, just the
jars in userlib

 Classloader only loads newest jar of a particular
library

Migration

 Upgrade to the latest 6, i.e. 6.10.5

 Fix errors, warnings and deprecations

 Replace legacy layouts

 Upgrade App Store modules

 Location of App Store modules in your project
has moved to Project node

 Update your use of java APIs

 Mendix API is more strict -> API may have been
renamed or removed

 Classloader is more strict -> You cannot use all
the jars shipped with Mendix runtime, just the
jars in userlib

 Classloader only loads newest jar of a particular
library

Migration

 Upgrade to the latest 6, i.e. 6.10.5

 Fix errors, warnings and deprecations

 Replace legacy layouts

 Upgrade App Store modules

 Location of App Store modules in your project
has moved to Project node

 Update your use of java APIs

 Mendix API is more strict -> API may have been
renamed or removed

 Classloader is more strict -> You cannot use all
the jars shipped with Mendix runtime, just the
jars in userlib

 Classloader only loads newest jar of a particular
library

Migration

 Upgrade to the latest 6, i.e. 6.10.5

 Fix errors, warnings and deprecations

 Replace legacy layouts

 Upgrade App Store modules

 Location of App Store modules in your project
has moved to Project node

 Update your use of java APIs

 Mendix API is more strict -> API may have been
renamed or removed

 Classloader is more strict -> You cannot use all
the jars shipped with Mendix runtime, just the
jars in userlib

 Classloader only loads newest jar of a particular
library

Migration

 Upgrade to the latest 6, i.e. 6.10.5

 Fix errors, warnings and deprecations

 Replace legacy layouts

 Upgrade App Store modules

 Location of App Store modules in your project
has moved to Project node

 Update your use of java APIs

 Mendix API is more strict -> API may have been
renamed or removed

 Classloader is more strict -> You cannot use all
the jars shipped with Mendix runtime, just the
jars in userlib

 Classloader only loads newest jar of a particular
library

Migration

Migration – Impact of Stateless Runtime

 Every session is a persistent session

 After logout it may take up to 30 seconds before the logout is visible on all

runtime instances

 You can configure this using SessionValidationTimeout

 NPE attributes need to have read access

 Autocommitted objects not supported in system sessions

 Sign-in microflow has been removed

Rest

 HTTP response metadata

 Optionally raw response payload

 Access to headers

 Access to cookies (via headers)

 Access to status

 urlEncode & urlDecode

New Rest Features Mendix 7

 HTTP response metadata

 Optionally raw response payload

 Access to headers

 Access to cookies (via headers)

 Access to status

 urlEncode & urlDecode

New Rest Features Mendix 7

More Info

More info

 https://docs.mendix.com/releasenotes/desktop-modeler/7.0

 https://docs.mendix.com/refguide7/moving-from-6-to-7

 https://docs.mendix.com/refguide7/clustered-mendix-runtime

 https://docs.mendix.com/howtogeneral/bestpractices/best-

practices-for-app-performance-in-mendix-7

https://docs.mendix.com/releasenotes/desktop-modeler/7.0
https://docs.mendix.com/refguide7/moving-from-6-to-7
https://mendix7-beta.cfapps.io/refguide7/clustered-mendix-runtime
https://docs.mendix.com/howtogeneral/bestpractices/best-practices-for-app-performance-in-mendix-7

Thank You!

QUESTIONS?

